Showing posts with label International Energy Agency. Show all posts
Showing posts with label International Energy Agency. Show all posts

Tuesday, 4 December 2012

Wind Power as a Viable Solution to Meeting Alternative Energy Needs


Although it is much less expensive to initially get hooked into the local electric company's grid than it is to set up and hook into wind turbines, in the long run one saves money by utilizing the wind for one's energy needs—while also becoming more independent. Not receiving an electric bill while enjoying the advantages of the modern electrically-driven lifestyle is a wondrous feeling. 

Electric bills and fuel bills are rising steadily—but the cost of wind turbine energy is zero, and the cost of installing and hooking up a turbine is steadily coming down as demand rises and more commercial success is realized by various companies producing the turbines and researching technologies to make them ever more efficient. In addition, people are moving away from the traditional electric grids and the fossil fuels for personal reasons including desire for greater independence, the desire to live remotely or rurally without having to “go primitive”, political concerns such as fears of terrorist strikes on oil fields or power grids, or concerns about the environment. 


Again, this motivation to get away from the traditional energy sources is the same one that causes people to seek the power of the wind for their energy, giving more business opportunities to profit from wind turbine production and maintenance, which drives their costs down for the consumers. In nearly thirty states at the time of this writing, homeowners who remain on the grid but who still choose to use wind energy (or other alternative forms) are eligible for rebates or tax breaks from the state governments that end up paying for as much as 50% of their total “green” energy systems' costs. In addition, there are 35 states at the time of this writing where these homeowners are allowed to sell their excess energy back to the power company under what are called “net metering laws”. The rates that they are being paid by the local power companies for this energy are standard retail rates—in other words, the homeowners are actually profiting from their own energy production. 

Some federal lawmakers are pushing to get the federal government to mandate these tax breaks and other wind power incentives in all 50 states. Japan and Germany already have national incentive programs in place. However, “A lot of this is handled regionally by state law. There wouldn't really be a role for the federal government,” the Energy Department's Craig Stevens says. And as might be imagined, there are power companies who feel that it's unfair that they should have to pay retail rates to private individuals. “We should [only have to] pay you the wholesale rate for ... your electricity,” according to Bruce Bowen, Pacific Gas & Electric's director of regulatory policy. However, the companies seem to be more worried about losing short term profits than about the benefits, especially in the long run, of the increased use of wind turbines or wind farms. Head of the Center for Energy Efficiency and Renewable Technologies of California V. John White points out, “It's quality power that strengthens the grid.” 


University Research into Alternative Energy


Decades of tree and biomass research jointly conducted by Florida Statue University and Shell Energy have resulted in the planting of the largest single “Energy Crop Plantation” in the entire United States. This Plantation spans approximately 130 acres and is home to over 250,000 planted trees including cottonwoods (native to the area) and eucalyptus (which are non-invasive) along with various row crops such as soybeans. This organization of “super trees” was brought into being as a result of the University's joint research with other agencies including Shell, the US Department of Energy, the Common Purpose Institute, and groups of various individuals who are working to develop alternative energy sources (those not dependent on fossil fuels) for the future. This research is focused on the planting and processing of biomass energy supplies from fast-growing crops known as “closed loop biomass” or simply “energy crops”. The project seeks to develop “power plants”  such as wood-pulp or wood-fiber providing plants; clean biogas to be used by industries; plants such as surgarcane which can be used for ethanol development; and crops such as soybeans for biodiesel fuel production.

University involvement in alternative energy research is also going on at Penn State University. At Penn State, special research is focused on the development of hydrogen power as a practical alternative energy source. The researchers involved are convinced that mankind is moving toward a hydrogen-fueled economy due to the needs for us to reduce air pollution and find other sources of energy besides petroleum to power up the United States. Hydrogen energy burns clean and can be endlessly renewed, as it can be drawn from water and crop plants. Hydrogen power would thus be a sustainable energy resource to be found within the US' own infrastructure while the world's supply of (affordable) oil peaks and begins to decline. The University seeks to help with the commercial development of hydrogen powered fuel cells, which would be usable in place of or in tandem with combustion engines for all of our motor vehicles. 

When President Bush recently announced his alternative energy initiative, he determined that the government would develop five “Sun Grant” centers for concentrated research. Oregon State University has the honor of having been selected as one of these centers, and has been allocated government grants of $20 million for each of the next four years in order to carry out its mission. OSU will lead the way in researching alternative energy as it represents the interests of the Pacific Islands, the US' Pacific Territories, and nine western states. OSU President Edward Ray says, the research being conducted through OSU’s Sun Grant center will contribute directly to our meeting President Bush’s challenge for energy independence. Specific research into alternative energy being conducted at OSU by varios teams of scientists right now include a project to figure out how to efficiently convert such products as straw into a source of renewable biomass fuel, and another one aimed at studying how to efficiently convert wood fibers into liquid fuel.

The Ways that the Military is Using Alternative Energy


The US military knows that its branches must revamp their thinking about how to engage in “the theater of war” in the new, post-Cold War world of the 21st century. One thing that the military leaders stress is the desire for the forces deployed in the theater to be able to be more energy-independent. Currently the US military has policies and procedures in place to interact with allies or sympathetic local populaces to help its forces in the field get their needed energy and clean water when engaged in a foreign military campaign. However, this is not wholly reliable, as the US might well find itself facing unilateral military activities, or have itself in a situation where its allies cannot help it with the resources it needs to conduct its military actions successfully.

The US military is very interested in certain alternative energies that, with the right research and development technologically, can make it energy independent, or at least a great deal more so, on the battlefield. One of the things that greatly interests the military along these lines is the development of small nuclear reactors, which could be portable, for producing theater-local electricity. The military is impressed with how clean-burning nuclear reactors are and how energy efficient they are. Making them portable for the typical warfare of today's highly mobile, small-scaled military operations is something they are researching. The most prominent thing that the US military thinks these small nuclear reactors would be useful for involves the removal of hydrogen (for fuel cell) from seawater. It also thinks that converting seawater to hydrogen fuel in this way would have less negative impact on the environment than its current practices of remaining supplied out in the field.

Seawater is, in fact, the military's highest interest when it comes to the matter of alternative energy supply. Seawater can be endlessly “mined” for hydrogen, which in turn powers advanced fuel cells. Using OTEC, seawater can also be endlessly converted into desalinated, potable water.  Potable water and hydrogen for power are two of the things that a near-future deployed military force will need most of all. 

In the cores of nuclear reactors—which as stated above are devices highly interesting, in portable form, to the US military—we encounter temperatures greater than 1000 degrees Celsius. When this level of temperature is mixed with a thermo-chemical water-splitting procedure, we have on our hands the most efficient means of breaking down water into its component parts, which are molecular hydrogen and oxygen. The minerals and salts that are contained in seawater would have to be extracted via a desalination process in order to make the way clear for the water-splitting process. These could then be utilized, such as in vitamins or in salt shakers, or simply sent back to the ocean (recycling). Using the power of nuclear reactors to extract this hydrogen from the sea, in order to then input that into fuel cells to power advanced airplanes, tanks, ground vehicles, and the like, is clearly high on the R & D priority list of the military.

Renewable Fuels for Alternative Energy


The Germans have really taken off when it comes to renewable fuel sources, and have become one of the major players in the alternative energy game. Under the aegis of the nation's electricity feed laws, the German people set a world record in 2006 by investing over $10 billion (US) in research, development, and implementation of wind turbines, biogas power plants, and solar collection cells. Germany's “feed laws” permit the German homeowners to connect to an electrical grid through some source of renewable energy and then sell back to the power company any excess energy produced at retail prices. This economic incentive has catapulted Germany into the number-one position among all nations with regards to the number of operational solar arrays, biogas plants, and wind turbines. The 50-terawatt hours of electricity produced by these renewable energy sources account for 10% of all of Germany's energy production per year. In 2006 alone, Germany installed 100,000 solar energy collection systems.

Over in the US, the BP corporation has established an Energy Biosciences Institute (EBI) to spearhead extensive new research and development efforts into clean burning renewable energy sources, most prominently biofuels for ground vehicles. BP's investment comes to $50 million (US) per year over the course of the next decade. This EBI will be physically located at the University of Illinois Urbana-Champaign. The University is in partnership with BP, and it will be responsible for research and development of new biofuel crops, biofuel-delivering agricultural systems, and machines to produce renewable fuels in liquid form for automobile consumption. The University will especially spearhead efforts in the field of genetic engineering with regard to creating the more advanced biofuel crops. The EBI will additionally have as a major focal point technological innovations for converting heavy hydrocarbons into pollution-free and highly efficient fuels.

Also in the US, the battle rages on between Congress and the Geothermal Energy Association (GEA). The GEA's Executive Director Karl Gawell has recently written to the Congress and the Department of Energy, the only way to ensure that DOE and OMB do not simply revert to their irrational insistence on terminating the geothermal research program is to schedule a congressional hearing specifically on geothermal energy, its potential, and the role of federal research. Furthermore, Gawell goes on to say that recent studies by the National Research Council, the Western Governors' Association Clean Energy Task Force and the Massachusetts Institute of Technology all support expanding geothermal research funding to develop the technology necessary to utilize this vast, untapped domestic renewable energy resource. Supporters of geothermal energy, such as this writer, are amazed at the minuscule amount of awareness that the public has about the huge benefits that research and development of the renewable alternative energy source would provide the US, both practically and economically. Geothermal energy is already less expensive to produce in terms of kilowatt-hours than the coal that the US keeps mining. Geothermal energy is readily available, sitting just a few miles below our feet and easily accessible through drilling. One company, Ormat, which is the third largest geothermal energy producer in the US and has plants in several different nations, is already a billion-dollar-per-year business—geothermal energy is certainly economically viable.

Monday, 8 August 2011

Biofuels as Alternative Sources of Energy

Biofuels as Alternative Sources of Energy are produced by converting organic matter into fuel for powering our society. These biofuels are an alternative energy source to the fossil fuels that we currently depend upon. The biofuels umbrella includes under its aegis ethanol and derivatives of plants such as sugar cane, as well aS vegetable and corn oils. However, not all ethanol products are designed to be used as a kind of gasoline. The International Energy Agency (IEA) tells us that ethanol could comprise up to 10 percent of the world's usable gasoline by 2025, and up to 30 percent by 2050. Today, the percentage figure is two percent.

However, we have a long way to go to refine and make economic and practical these biofuels that we are researching. A study by Oregon State University proves this. We have yet to develop biofuels that are as energy efficient as gasoline made from petroleum. Energy efficiency is the measure of how much usable energy for our needed purposes is derived from a certain amount of input energy. (Nothing that mankind has ever used has derived more energy from output than from what the needed input was. What has always been important is the conversion—the end-product energy is what is useful for our needs, while the input energy is just the effort it takes to produce the end-product.) The OSU study found corn-derived ethanol to be only 20% energy efficient (gasoline made from petroleum is 75% energy efficient). Biodiesel fuel was recorded at 69% energy efficiency. However, the study did turn up one positive: cellulose-derived ethanol was charted at 85% efficiency, which is even higher than that of the fantastically efficient nuclear energy. 

Recently, oil futures have been down on the New York Stock Exchange, as analysts from several different countries are predicting a surge in biofuel availability which would offset the value of oil, dropping crude oil prices on the international market to $40 per barrel or thereabouts.  The Chicago Stock Exchange has a grain futures market which is starting to “steal” investment activity away from the oil futures in NY, as investors are definitely expecting better profitability to start coming from biofuels. Indeed, it is predicted by a consensus of analysts that biofuels shall be supplying seven percent of the entire world's transportation fuels by the year 2030. One certain energy markets analyst has said, growth in demand for diesel and gasoline may slow down dramatically, if the government subsidizes firms distributing biofuels and further pushes to promote the use of eco-friendly fuel.

There are several nations which are seriously involved in the development of biofuels.

There is Brazil, which happens to be the world's biggest producer of ethanols derived from sugars. It produces approximately three and a half billion gallons of ethanol per year.

The United States, while being the world's greatest oil-guzzler, is already the second largest producer of biofuels behind Brazil.

The European Union's biodiesel production capacity is now in excess of four million (British) tonnes. 80 percent of the EU's biodiesel fuels are derived from rapeseed oil; soybean oil and a marginal quantity of palm oil comprise the other 20 percent.