Showing posts with label Ocean Thermal Energy Conversion. Show all posts
Showing posts with label Ocean Thermal Energy Conversion. Show all posts

Tuesday, 4 December 2012

Investments in Alternative Energy


It is possible to have a portfolio which profitably (that's the key word, is it not?) invests in alternative energy funds. “Green” energy production is expected to be a multi-billion (in today's dollars) industry by 2013.

The most recently developed wind-turbine technologies have brought us wind-produced energy which is more cost efficient as well as more widespread. More state-of-the-art wind energy technologies are typically more market competitive with conventional energy technologies. The newer wind-power technologies don't even kill birds like in days of old! Wind energy production is a growing technology, and companies engaged in it would make up an excellent part of a growth or aggressive growth portfolio.

Next to consider are solar cell, or photovoltaic cell, technologies. These are to be found implemented in pocket calculators, private property lights, US Coast Guard buoys, and other areas. More and more they find their way onto the roofs of housing and commercial buildings and building complexes. Cost is falling. Their energy efficiency (the ratio of the amount of work needed to cause their energy production versus the actual energy production) is steadily on the rise. As an example, the conversion efficiency of silicon cells has increased from a mere four percent in 1982 to over 20% for the latest technologies. Photovoltaic cells create absolute zero pollution as they are generating electrical power. However, photovoltaic cellls are not presently as cost effective as “utility produced” electricity. “PV” cells are not [capable at present for producing industrial-production amounts of electricity due to their present constraints on space. However, areas where photovoltaic cell arrays could be implemented are increasingly available. In sum, costs are going down while efficiency is rising for this alternative fuel technology.

Many alternative energy investment portfolio advisors are confident that alternative energies derived from currents, tidal movement, and temperature differentials are poised to become a new and predominant form of clean energy. The French are actually fairly advanced at hydro power generation, and numerous studies are being made in Scotland and the US along these sames lines. Some concerns  center around the problems with the deterioration of metals in salt water, marine growth such as barnacles, and violent storms which have all been disruptions to energy production in the past. However, these problems for the most part seem to be cured through the use of different, better materials. Ocean-produced energy has a huge advantage because the timing of ocean currents and waves are well understood and reliable.

Investments in hydro-electric technology have grown in the last two decades. Hydro-electric power is clean; however, it's also limited by geography. While already prominent as power generation, the large, older dams have had problems with disturbing marine life. Improvements have been made on those dams in order to protect marine life, but these improvements have been expensive. Consequently, more attention is now being paid to low-impact "run-of-the-river" hydro-power plants, which do not have these ecological problems.

The reality is, the energy future is green, and investors would do well to put their money out wisely, with that advice in their minds.

Investment into Alternative Energy Research and Development


The US government must continue to back the expansion of the role of alternative energy research and development and its implementation by companies and homeowners. Although this writer believes in the reign of the free market and that “that government is best which governs least”, our current system has companies and people expecting federal backing of major initiative with direct investment, in the form of tax breaks, rebate incentives, and even direct central bank investment into the alternative energy industry.

The US and its citizenry need to invest all of the time and energy that they can spare to the conversion from a fossil fuel burning society to one that is green for several different reasons. The green economy will not harm the environment or the quality of our air like fossil fuel burning does. We can become the energy independent nation that we need to be by cutting away our need to import oil, especially oil that is produced by anti-American nations such as Iran.  Ultimately, renewable energies and extremely efficient energies like atomic energy are far less expensive than the continuous mining and drilling for fossil fuels.  If we do not invest in our future now, catastrophe awaits us. We are going to need to consume more energy than ever in our history as we sail into the 21st century and beyond—our dependency on foreigners for meeting these energy needs only leaves us open to sabotage while draining our coffers in order to fill other nations'.

It can be argued that federal, state, and local governments should work in conjunction on the issue of alternative energy research and development and implement mandatory programs for new home construction and all home remodeling that stipulate the installation of alternative energy power sources—eventually over a certain period of years transforming into 100% installation of alternative energy sources for any new home or corporate building—as well as backing a similar program to have all new vehicles produced in the nation be hybrid vehicles or hydrogen fuel cell powered vehicles by the year 2020. All levels of government could also impose mandatory compliance laws on construction and utilities companies. The utility companies in all 50 states should be required to invest in alternative energy research and development while also being required to buy back, at fair rates, excess energy produced by homeowners through their use of alternative energy power sources. Strong financial incentives need to be in place for new companies to invest in developing renewable energies. This would not only make the US energy independent at the fastest possible rate, but it would stimulate the growth of the economy and provide tens of thousands of new, good-paying jobs for people.

Alternative energy generation in the forms of solar, wind, hydroelectric, biofuel, geothermal, and atomic; alternative energy storage systems such as more efficient batteris and hydrogen fuel cells; and alternative energy-furthering infrastructures with superior energy efficiency all need to be brought into the affordable price range through development. Government investment into these matters would surely help us along.

Monday, 8 August 2011

Alternative Energy from the Ocean

Ocean Thermal Energy Conversion (OTEC) was conceived of by the French engineer Jacques D'Arsonval in 1881. However, at the time of this writing the Natural Energy Laboratory of Hawaii is home to the only operating experimental OTEC plant on the face of the earth. OTEC is a potential alternative energy source that needs to be funded and explored much more than it presently is. The great hurdle to get over with OTEC implementation on a wide and practically useful level is cost. It is difficult to get the costs down to a reasonable level because of the processes presently utilized to drive OTEC. Ocean thermal energy would be very clean burning and not add pollutants into the air. However, as it presently would need to be set up with our current technologies, OTEC plants would have the capacity for disrupting and perhaps damaging the local environment.

There are three kinds of OTEC.

Closed Cycle OTEC” uses a low-boiling point liquid such as, for example, propane to act as an intermediate fluid. The OTEC plant pumps the warm sea water into the reaction chamber and boils the intermediate fluid. This results in the intermediate fluid's vapor pushing the turbine of the engine, which thus generates electricity.  The vapor is then cooled down by putting in cold sea water.

Open Cycle OTEC” is not that different from closed cycling, except in the Open Cycle there is no intermediate fluid. The sea water itself is the driver of the turbine engine in this OTEC format. Warm sea water found on the surface of the ocean is turned into a low-pressure vapor under the constraint of a vacuum. The low-pressure vapor is released in a focused area and it has the power to drive the turbine. To cool down the vapor and create desalinated water for human consumption, the deeper ocean's cold waters are added to the vapor after it has generated sufficient electricity.

Hybrid Cycle OTEC” is really just a theory for the time being. It seeks to describe the way that we could make maximum usage of the thermal energy of the ocean's waters. There are actually two sub-theories to the theory of Hybrid Cycling. The first involves using a closed cycling to generate electricity. This electricity is in turn used to create the vacuum environment needed for open cycling. The second component is the integration of two open cyclings such that twice the amount of desalinated, potable water is created that with just one open cycle.

In addition to being used for producing electricity, a closed cycle OTEC plant can be utilized for treating chemicals. OTEC plants, both open cycling and close cycling kinds, are also able to be utilized for pumping up cold deep sea water which can then be used for refrigeration and air conditioning. Furthermore, during the moderation period when the sea water is surrounding the plant, the enclosed are can be used for mariculture and aquaculture projects such as fish farming. There is clearly quite an array of products and services that we could derive from this alternative energy source.